This section of the Journal offers readers an opportunity to exchange interesting mathematical problems and solutions. Please send them to Ted Eisenberg, Department of Mathematics, Ben-Gurion University, Beer-Sheva, Israel or fax to: 972-86-477-648. Questions concerning proposals and/or solutions can be sent e-mail to <eisenbt@013.net>. Solutions to previously stated problems can be seen at <http://www.ssma.org/publications>.

Solutions to the problems stated in this issue should be posted before April 15, 2012

- **5194**: Proposed by Kenneth Korbin, New York, NY
 Find two pairs of positive integers \((a, b)\) such that,
 \[
 \frac{14}{a} + \frac{a}{b} + \frac{b}{14} = 41.
 \]

- **5195**: Proposed by Kenneth Korbin, New York, NY
 If \(N\) is a prime number or a power of primes congruent to 1 \((\text{mod } 6)\), then there are positive integers \(a\) and \(b\) such that \(3a^2 + 3ab + b^2 = N\) with \((a, b) = 1\).
 Find \(a\) and \(b\) if \(N = 2011\), and if \(N = 2011^2\), and if \(N = 2011^3\).

- **5196**: Proposed by Neculai Stanciu, Buzău, Romania
 Determine the last six digits of the product \((2010)(5^{2014})\).

- **5197**: Proposed by Pedro H. O. Pantoja, UFRN, Brazil
 Let \(x, y, z\) be positive real numbers such that \(x^2 + y^2 + z^2 = 4\). Prove that,
 \[
 \frac{1}{6 - x^2} + \frac{1}{6 - y^2} + \frac{1}{6 - z^2} \leq \frac{1}{xyz}.
 \]

- **5198**: Proposed by José Luis Díaz-Barrero, Barcelona, Spain
 Let \(m, n\) be positive integers. Calculate,
 \[
 \sum_{k=1}^{2n} \prod_{i=0}^{m} \left(\left\lfloor \frac{k}{2} \right\rfloor + a + i \right)^{-1},
 \]
 where \(a\) is a nonnegative number and \(\lfloor x \rfloor\) represents the greatest integer less than or equal to \(x\).

- **5199**: Proposed by Ovidiu Furdui, Cluj, Romania
Let \(k > 0 \) and \(n \geq 0 \) be real numbers. Calculate,

\[
\int_0^1 x^n \ln \left(\sqrt{1 + x^k} - \sqrt{1 - x^k} \right) \, dx.
\]

Solutions

• 5176: Proposed by Kenneth Korbin, New York, NY

Solve:

\[
\begin{align*}
x^2 + xy + y^2 &= 3^2 \\
y^2 + yz + z^2 &= 4^2 \\
z^2 + xz + x^2 &= 5^2.
\end{align*}
\]

Solution 1 by Albert Stadler, Herrliberg, Switzerland

Let

\[
\begin{align*}
A &= x^2 + xy + y^2 - 9 \\
B &= y^2 + yz + z^2 - 16 \\
C &= z^2 + xz + x^2 - 25
\end{align*}
\]

By assumption \(A = B = C = 0 \). So, \(0 = A + B - C = xy + yz - xz + 2y^2 \) or equivalently \(z(x - y) = y(x + 2y) \). Obviously \(x \neq y \), since if \(x = y \) then \(0 = B = x^2 + xz + z^2 - 16 \) and \(0 = C = z^2 + xz + x^2 - 25 \) which is a contradiction. So,

\[
z = \frac{y(x + 2y)}{x - y}.
\]

We insert this value of \(z \) into the equation \(B = 0 \) and obtain

\[
16 = y^2 + y \cdot \frac{y(x + 2y)}{x - y} + \left(\frac{y(x + 2y)}{x - y} \right)^2
\]

\[
= y^2 \cdot \frac{(x - y)^2 + (x - y)(x + 2y) + (x + 2y)^2}{(x - y)^2}
\]

\[
= y^2 \cdot \frac{x^2 - 2xy + y^2 + x^2 + xy - 2y^2 + x^2 + 4xy + 4y^2}{(x - y)^2}
\]

\[
= y^2 \cdot \frac{3x^2 + 3xy + 3y^2}{(x - y)^2} = \frac{27y^2}{(x - y)^2}.
\]

So,

\[
4(x - y) = \pm 3\sqrt{3}y \quad \text{or equivalently,}
\]

\[
x = \left(1 + \frac{3\sqrt{3}}{4} \right) y \quad \text{or} \quad x = \left(1 - \frac{3\sqrt{3}}{4} \right) y.
\]
\(A = 0 \) then implies
\[
\left\{ \left(1 \pm \frac{3\sqrt{3}}{4} \right)^2 + \left(1 \pm \frac{3\sqrt{3}}{4} \right) + 1 \right\} y^2 = 9.
\]

Taking into account (1) and (2) we conclude that
\[
(x, y, z) \in \begin{cases}
\left(\frac{9 + 4\sqrt{3}}{\sqrt{25 + 12\sqrt{3}}}, \frac{4\sqrt{3}}{\sqrt{25 + 12\sqrt{3}}}, \frac{4(4 + \sqrt{3})}{\sqrt{25 + 12\sqrt{3}}} \right), \\
\left(\frac{9 + 4\sqrt{3}}{\sqrt{25 + 12\sqrt{3}}}, \frac{-4\sqrt{3}}{\sqrt{25 + 12\sqrt{3}}}, \frac{4(-4 + \sqrt{3})}{\sqrt{25 + 12\sqrt{3}}} \right), \\
\left(\frac{9 - 4\sqrt{3}}{\sqrt{25 - 12\sqrt{3}}}, \frac{-4\sqrt{3}}{\sqrt{25 - 12\sqrt{3}}}, \frac{4(4 - \sqrt{3})}{\sqrt{25 - 12\sqrt{3}}} \right)
\end{cases}
\]

The system of equations in the statement of the problem has an interesting geometric interpretation. Let \(ABC \) be a triangle all of whose angles are smaller than 120°. The Fermat point (or Torricelli point) of the triangle \(ABC \) is a point \(P \) such that the total distance from the three vertices of the triangle to the point is the minimum possible (see http://en.wikipedia.org/wiki/Fermat_point).

Let \(AB = c, BC = a, CA = b, AP = x, BP = y, CP = z \). Then
\[
\angle APB = \angle APC = \angle BPC = 120^\circ \quad \text{and} \quad x^2 + xy + y^2 = c^2,
\]
\[
y^2 + yz + z^2 = a^2,
\]
\[
z^2 + xz + x^2 = b^2,
\]
by the law of cosines. So \(x, y \) and \(z \) are the distances from the three vertices of the triangle to the Fermat point of the triangle.

• **Solution 2 by José Luis Díaz-Barrero, Barcelona, Spain**

Subtracting the equations term by term, we obtain
\[
(x^2 - y^2) + z(x - y) = 9, \quad \Leftrightarrow \quad (x - y)(x + y + z) = 9,
\]
\[
(x^2 - z^2) + y(x - z) = -7, \quad \Leftrightarrow \quad (x - z)(x + y + z) = -7.
\]

Putting \(u = x + y + z \), then we obtain \((x - y)u = 9\) and \((x - z)u = -7\). Adding both equations yields \((3x - (x + y + z))u = 2\) from which follows \(x = \frac{u^2 + 2}{3u} \). Likewise, we
obtain \(y = \frac{u^2 - 25}{3u} \), and \(z = \frac{u^2 + 23}{3u} \). Substituting the values of \(x, y, z \) into one of the equations of the given system, yields

\[
\left(\frac{u^2 + 2}{3u} \right)^2 + \left(\frac{u^2 + 2}{3u} \right) \left(\frac{u^2 - 25}{3u} \right) + \left(\frac{u^2 - 25}{3u} \right)^2 = 3^2
\]

or equivalently,

\[
3u^4 - 150u^2 + 579 = 0.
\]

Solving the preceding equation, we have the solutions:

\[
\pm \sqrt{25 - 12\sqrt{3}}, \quad \pm \sqrt{25 + 12\sqrt{3}}.
\]

Substituting these values in the expressions of \(x, y, z \) yields four triplets of solutions for the system. Namely,

\[
(x_1, y_1, z_1) = \left(\frac{27 - 12\sqrt{3}}{3\sqrt{25 - 12\sqrt{3}}}, \frac{-4\sqrt{3}}{\sqrt{25 - 12\sqrt{3}}}, \frac{48 - 12\sqrt{3}}{3\sqrt{25 - 12\sqrt{3}}} \right) = (1.009086173, -3.374440097, 4.418495493)
\]

\[
(x_2, y_2, z_2) = \left(\frac{-27 - 12\sqrt{3}}{3\sqrt{25 - 12\sqrt{3}}}, \frac{4\sqrt{3}}{\sqrt{25 - 12\sqrt{3}}}, \frac{-48 - 12\sqrt{3}}{3\sqrt{25 - 12\sqrt{3}}} \right) = (-1.009086173, 3.374440097, -4.418495493)
\]

\[
(x_3, y_3, z_3) = \left(\frac{27 + 12\sqrt{3}}{3\sqrt{25 + 12\sqrt{3}}}, \frac{4\sqrt{3}}{\sqrt{25 + 12\sqrt{3}}}, \frac{48 + 12\sqrt{3}}{3\sqrt{25 + 12\sqrt{3}}} \right) = (2.354003099, 1.023907822, 3.388521646)
\]

\[
(x_4, y_4, z_4) = \left(\frac{-27 + 12\sqrt{3}}{3\sqrt{25 + 12\sqrt{3}}}, \frac{-4\sqrt{3}}{\sqrt{25 + 12\sqrt{3}}}, \frac{-48 + 12\sqrt{3}}{3\sqrt{25 + 12\sqrt{3}}} \right) = (-2.354003099, -1.023907822, -3.388521646)
\]

Also solved by Arkady Alt, San Jose, CA; Bruno Salgueiro Fanego, Viveiro, Spain; Paul M. Harms, North Newton, KS; Enkel Hysnelaj, University of Technology, Sydney, Australia jointly with Elton Bojaxhiu, Kriftel, Germany; Kee-Wai Lau, Hong Kong, China; Paolo Perfetti, Department of Mathematics, University “Tor Vergata,” Rome, Italy; Boris Rays, Brooklyn, NY; Titu Zvonaru, Comănești, Romania jointly with Neculai Stanciu, Buzău, Romania, and the proposer.
Proposed by Kenneth Korbin, New York, NY

A regular nonagon \(ABCDEFGHI \) has side 1.

Find the area of \(\triangle ACF \).

Solution 1 by Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie, San Angelo, TX

We begin with the following known facts:

1. Each angle in a regular nonagon is 140°.
2. \(\cos 140° = \cos(180° - 40°) = -\cos 40°. \)
3. \(\cos 100° = -\cos 80°. \)
4. \(1 + \cos 2\theta = 2\cos^2 \theta. \)
5. \(A = \frac{1}{2}ab\sin C \) in \(\triangle ABC \).

Hence, \(\triangle ABC \cong \triangle HIA \cong \triangle HGF \) by SAS. Using Fact 1, since \(\angle B = \angle I = \angle G = 140° \), it follows that \(\angle BAC = \angle IAH = \angle IHA = \angle GHF = \angle GFH = 20° \). Thus, \(\angle AHF = 100° \). Since \(\triangle AHF \) is an isosceles triangle, \(\angle HAF = \angle HFA = 40° \). Therefore, \(\angle CAF = 60° \). In \(\triangle ABC \), using the Law of Cosines and Facts 2 and 4,

\[
AC^2 = 1 + 1 - 2\cos 140° = 2(1 - \cos 140°) = 2(1 + \cos 40°) = 4\cos^2 20°.
\]

Then,

\[
AC = 2\cos 20°.
\]

Similarly, since \(AC = HA = HF = 2\cos 20° \), using the Law of Cosines and Facts 3 and 4 in \(\triangle HAF \),

\[
AF^2 = (2\cos 20°)^2 + (2\cos 20°)^2 - 2(2\cos 20°)^2 \cos 100° = 8\cos^2 20°(1 - \cos 100°) = 8\cos^2 20°(1 + \cos 80°) = 16\cos^2 20°\cos^2 40°.
\]

Thus,

\[
AF = 4\cos 20°\cos 40°.
\]

In \(\triangle ACF \), using Fact 5,

\[
A = \frac{1}{2}(AC)(AF)\sin 60° = \frac{1}{2}(2\cos 20°)(4\cos 20°\cos 40°)\left(\frac{\sqrt{3}}{2}\right) = 2\sqrt{3}\cos^2 20°\cos 40° \approx 2.343237.
\]

Solution 2 by Bruno Salgueiro Fanego, Viveiro, Spain

Denote the circumcenter and the circumradius of the nonagon by \(O \) and \(r \), respectively.
The nonagon can be oriented within the Cartesian plane so that its vertices are

\[A (r \cos 0^\circ, r \sin 0^\circ) \quad B (r \cos 40^\circ, r \sin 40^\circ) \quad C (r \cos 80^\circ, r \sin 80^\circ) \]

\[D (r \cos 120^\circ, r \sin 120^\circ) \quad E (r \cos 160^\circ, r \sin 160^\circ) \quad F (r \cos 200^\circ, r \sin 200^\circ) \]

\[G (r \cos 240^\circ, r \sin 240^\circ) \quad H (r \cos 280^\circ, r \sin 280^\circ) \quad I (r \cos 320^\circ, r \sin 320^\circ) . \]

Then,

\[AB^2 = (r \cos 40^\circ - r \cos 0^\circ)^2 + (r \sin 40^\circ - r \sin 0^\circ)^2 \]

\[= r^2 (\cos^2 40^\circ - 2 \cos 40^\circ + 1 + \sin^2 40^\circ)^2 \]

\[= 2r^2 (1 - \cos 40^\circ) \Rightarrow r^2 = \frac{1}{2 (1 - \cos 40^\circ)} . \]

The area of \(\triangle ACF \) is

\[[\triangle ACF] = \frac{1}{2} \left| \begin{vmatrix} 1 & 1 & 1 \\ \hline r & r \cos 80^\circ & r \cos 200^\circ \\ 0 & r \sin 80^\circ & r \sin 200^\circ \end{vmatrix} \right| \]

\[= \frac{1}{2} \left| r^2 \cos 80^\circ \sin 200^\circ + r^2 \sin 80^\circ - r^2 \cos 200^\circ \sin 80^\circ - r^2 \sin 200^\circ \right| \]

\[= \frac{1}{2} \left| r^2 (\cos 80^\circ \sin 200^\circ - \sin 80^\circ \cos 200^\circ) + r^2 \sin 80^\circ - r^2 \sin 200^\circ \right| \]

\[= \frac{r^2}{2} \left| (\sin(200^\circ - 80^\circ) + \sin 80^\circ - \sin 200^\circ \right| \]

\[= \frac{1}{4 (1 - \cos 40^\circ)} \left| \sin 120^\circ + \sin 80^\circ - \sin 200^\circ \right| \]

\[\approx 2.343237 . \]

Solution 3 by Kee-Wai Lau, Hong Kong, China

It is easy to check that \(\angle BAC = 20^\circ, \angle IAF = \angle FAC = 60^\circ \) and \(AC = 2 \cos 20^\circ \). Suppose that the perpendicular from \(I \) to \(AF \) meets \(AF \) at \(J \), the perpendicular from \(H \) to \(AF \) meets \(AF \) at \(K \), and the perpendicular from \(I \) to \(HK \) meets \(HK \) at \(L \). Then \(\angle HIL = 20^\circ \) and

\[AF = 2(AJ + JK) = 2(AJ + IL) = 2(\cos 60^\circ + \cos 20^\circ) = 1 + 2 \cos 20^\circ . \]

Hence the area of \(\triangle ACF \) equals

\[
\frac{(AC)(AF) \sin \angle FAC}{2}
\]
\[
\begin{align*}
\cos 20^\circ (1 + 2 \cos 20^\circ \sqrt{3}) & \quad = \quad \frac{\cos 20^\circ (1 + 2 \cos 20^\circ \sqrt{3})}{2} \\
\left(1 + \cos 20^\circ + \cos 40^\circ \right) \sqrt{3} & \quad = \quad \frac{\left(1 + \cos 20^\circ + \cos 40^\circ \right) \sqrt{3}}{2} \\
\sqrt{3}(1 + \sqrt{3} \cos 10^\circ) & \quad = \quad \frac{\sqrt{3}(1 + \sqrt{3} \cos 10^\circ)}{2} \\
\approx \quad 2.343237.
\end{align*}
\]

Solution 4 by proposer

\[
\text{Area of } \triangle ACF = \frac{\sin 40^\circ \cdot \sin 60^\circ \cdot \sin 80^\circ}{2 \sin^2 20^\circ}
\]

\[
= \quad \frac{\sqrt{3}}{16} \left[3 \tan^2 70^\circ - 1\right]
\]

\[
\approx \quad 2.343237.
\]

Comment by editor: Sines and cosines of angles of \(10^\circ, 20^\circ, 40^\circ\) and their complements often appear in the above solutions. David Stone and John Hawkins of Statesboro, GA noted in their solution that: “It may be possible to express the result \((\sqrt{3} \cos 40^\circ (1 + \cos 40^\circ))\) in terms of radicals, even though \(\cos 40^\circ\) itself cannot be expressed in terms of surds; it (along with \(\sin 10^\circ\) and \(-\sin 70^\circ\)) is a zero of the famous \textit{casus irreducibilis} cubic \(8x^3 - 6x + 1 = 0\).”

Also solved by Scott H. Brown, Montgomery, AL; Brian D. Beasley, Clinton, SC; Kenneth Day and Michael Thew (jointly, students at Saint George’s School), Spokane, WA; Paul M. Harms, North Newton, KS; Enkel Hysnelaj, University of Technology, Sydney, Australia jointly with Elton Bojaxhiu, Kriftel, Germany; David E. Manes, Oneonta, NY; Charles McCracken, Dayton, OH; John Nord, Spokane, WA; Boris Rays, Brooklyn, NY, and Albert Stadler, Herrliberg, Switzerland.

* \textbf{5178:} Proposed by Neculai Stanciu, Buzău, Romania

Prove: If \(x, y\) and \(z\) are positive real numbers such that \(xyz \geq 7 + 5\sqrt{2}\), then

\[
x^2 + y^2 + z^2 - 2(x + y + z) \geq 3.
\]

Solution 1 by Albert Stadler, Herrliberg, Switzerland

By the AM-GM inequality, \(\frac{x + y + z}{3} \geq \sqrt[3]{xyz} \geq \sqrt[3]{7 + 5\sqrt{2}} = 1 + \sqrt{2}\). Let

\[
f(x) = x^2 - 2x - 1.\ f(x)\ \text{is a convex function that is monotonically increasing for } x \geq 1.
\]

By Jensen’s inequality,

\[
x^3 + y^3 + z^3 - 2(x + y + z) - 3 = f(x) + f(y) + f(z) \geq 3f \left(\frac{x + y + z}{3} \right) \geq 3f \left(1 + \sqrt{2} \right) = 0.
\]
Solution 2 by David E. Manes, Oneonta, NY

Note that for positive real numbers if \(x \geq 1 + \sqrt{2} \), then \((x - 1)^2 \geq 2 \) with equality if and only if \(x = 1 + \sqrt{2} \). Therefore, if \(x, y, z \geq 1 + \sqrt{2} \), then \(xyz \geq 7 + 5\sqrt{2} \) and \((x - 1)^2 + (y - 1)^2 + (z - 1)^2 \geq 6 \). Expanding this inequality yields \(x^2 + y^2 + z^2 - 2(x + y + z) \geq 3 \) with equality if and only if \(x = y = z = 1 + \sqrt{2} \).

Solution 3 by Paolo Perfetti, Department of Mathematics, University “Tor Vergata,” Rome, Italy

We know that \(x^2 + y^2 + z^2 \geq (x + y + z)^2 \) thus the inequality is implied by \(S^2 - 6S - 9 \geq 0 \), \(S = x + y + z \) yielding \(S \geq 3(1 + \sqrt{2}) \). Moreover by the AGM we have \(S \geq 3(xyz)^{1/3} \geq 3(7 + 5\sqrt{2})^{1/3} \), thus we need to check that \(3(7 + 5\sqrt{2})^{1/3} \geq 3(1 + \sqrt{2}) \) or \(7 + 5\sqrt{2} \geq (1 + \sqrt{2})^3 \) which is actually an equality, and we are done.

Also solved by Arkady Alt, San Jose California; Bruno Salgueiro Fanego, Viveiro, Spain; Paul M. Harms, North Newton, KS; Kee-Wai Lau, Hong Kong, China; Boris Rays, Brooklyn, NY, and the proposer.

• 5179: Proposed by José Luis Díaz-Barrero, Barcelona, Spain

Find all positive real solutions \((x_1, x_2, \ldots, x_n)\) of the system

\[
\begin{align*}
 x_1 + \sqrt{x_2 + 11} &= \sqrt{x_2 + 76}, \\
 x_2 + \sqrt{x_3 + 11} &= \sqrt{x_3 + 76}, \\
 &\cdots \cdots \\
 x_{n-1} + \sqrt{x_n + 11} &= \sqrt{x_n + 76}, \\
 x_n + \sqrt{x_1 + 11} &= \sqrt{x_1 + 76}.
\end{align*}
\]

Solution by Dionne Bailey, Elsie Campbell, and Charles Diminnie, San Angelo, TX

If \(f(t) = \sqrt{t + 76} - \sqrt{t + 11} \) on \((0, \infty)\), then

\[
f'(t) = \frac{1}{2} \left(\frac{1}{\sqrt{t + 76}} - \frac{1}{\sqrt{t + 11}} \right),
\]

and hence,

\[
|f'(t)| = \frac{1}{2} \left(\frac{1}{\sqrt{t + 11}} - \frac{1}{\sqrt{t + 76}} \right) < \frac{1}{2} \frac{1}{\sqrt{t + 11}} < \frac{1}{2} \frac{1}{\sqrt{11}} < 1
\]

for \(t > 0 \). It follows that \(f(t) \) is a contraction mapping on \((0, \infty)\) and therefore, \(f(t) \) has a unique fixed point \(t^* \in (0, \infty) \). Further, it is well-known that for any \(t \in (0, \infty) \), the
sequence defined recursively by \(t_1 = 7 \) and \(t_{k+1} = f(t_k) \) for \(k \geq 1 \) must converge to \(t^* \).

By trial and error, we find that \(t^* = 5 \).

In this problem,

\[
\begin{align*}
x_1 &= f(x_2), \\
x_2 &= f(x_3), \\
&\vdots \\
x_{n-1} &= f(x_n), \\
x_n &= f(x_1).
\end{align*}
\]

If we let \(t_1 = x_1 \) and define \(t_{k+1} = f(t_k) \) for \(k \geq 1 \), then \((x_1, x_2, \ldots, x_3, x_2)\) is a cycle in the sequence \(\{t_k\} \). However, as described above, \(t_k \to 5 \) as \(k \to \infty \). These conditions force \(x_1 = x_2 = \cdots = x_n = 5 \) and therefore, this must be the unique solution for this system.

Also solved by Arkady Alt, San Jose, CA; Scott H. Brown, Montgomery, AL; Bruno Salgueiro Fanego, Viveiro, Spain; Paul M. Harms, North Newton, KS; Kee-Wai Lau, Hong Kong, China; Paolo Perfetti, Department of Mathematics, “Tor Vergata” University, Rome, Italy; Albert Stadler, Herrliberg, Switzerland; Neculai Stanciu, Buzău Romania, jointly with Titu Zvonaru, Comănești, Romania, and the proposer.

\[\bullet \text{5180: Paolo Perfetti, Department of Mathematics, “Tor Vergata” University, Rome, Italy} \]

Let \(a, b \) and \(c \) be positive real numbers such that \(a + b + c = 1 \). Prove that

\[
\frac{1 + a}{bc} + \frac{1 + b}{ac} + \frac{1 + c}{ab} \geq \frac{4}{\sqrt{a^2 + b^2 - ab}} + \frac{4}{\sqrt{b^2 + c^2 - bc}} + \frac{4}{\sqrt{a^2 + c^2 - ac}}.
\]

Solution 1 by Kee-Wai Lau, Hong Kong, China

Multiplying both sides of the desired inequality by \(abc \), we see that it is equivalent to

\[
1 + a^2 + b^2 + c^2 \geq 4abc \left(\frac{1}{\sqrt{a^2 + b^2 - ab}} + \frac{1}{\sqrt{b^2 + c^2 - bc}} + \frac{1}{\sqrt{a^2 + c^2 - ac}} \right).
\]

Since

\[
a^2 + b^2 - ab = (a - b)^2 + ab \geq ab, \quad b^2 + c^2 - bc \geq bc, \quad a^2 + c^2 - ac \geq ac,
\]

the right hand side of (1) is less than or equal to

\[
4 \left(\sqrt{abc} + \sqrt{bca} + \sqrt{cab} \right)
\]

\[
\leq 2 ((a + b)c + (b + c)a + (c + a)b)
\]

\[
= 4(ab + bc + ca)
\]

\[
= 2 \left((a + b + c)^2 - a^2 - b^2 - c^2 \right)
\]
\[= 2 - 2 \left(a^2 + b^2 + c^2 \right).\]

Now
\[a^2 + b^2 + c^2 = (a - \frac{1}{3})^2 + (b - \frac{1}{3})^2 + (c - \frac{1}{3})^2 + \frac{2(a + b + c)}{3} - \frac{1}{3} \geq \frac{1}{3},\]
so that \[1 + a^2 + b^2 + c^2 \geq 2 - 2 \left(a^2 + b^2 + c^2 \right),\]
This proves (1) and completes the solution.

Solution 2 by Albert Stadler, Herrliberg, Switzerland.

By the AM-GM inequality,
\[
\frac{1 + a}{bc} + \frac{1 + b}{ca} + \frac{1 + c}{ab} = \frac{a + a^2 + b + b^2 + c + c^2}{abc}
\]
\[
= \frac{1 + a^2 + b^2 + c^2}{abc}
\]
\[
= \frac{(a + b + c)^2 + a^2 + b^2 + c^2}{abc}
\]
\[
= \frac{(2a^2 + 2bc) + (2b^2 + 2ac) + (2c^2 + 2ab)}{abc}
\]
\[
\geq 4\frac{a\sqrt{bc} + b\sqrt{ca} + c\sqrt{ab}}{abc}
\]
\[
= \frac{4}{\sqrt{bc}} + \frac{4}{\sqrt{ca}} + \frac{4}{\sqrt{ab}}.
\]

The conclusion follows since
\[
\frac{1}{\sqrt{xy}} \geq \frac{1}{\sqrt{x^2 + y^2 - xy}}.
\]
(Note that this inequality is equivalent to \[x^2 + y^2 - xy \geq xy\] which is obviously true.)

Also solved by Arkady Alt, San Jose, CA; Dionne T. Bailey, Elsie M. Campbell, and Charles Diminnie (jointly), San Angelo, TX; Bruno Salgueiro Fanego, Viveiro, Spain; David E. Manes, Oneonta, NY; Titu Zvonaru, Comănești, Romania jointly with Neculai Stanciu, Buzău, Romania, and the proposer.

5181: Proposed by Ovidiu Furdui, Cluj, Romania

Calculate:
\[
\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{n \cdot m}{(n + m)!}.
\]
Solution 1 by Anastasios Kotronis, Athens, Greece

The summands being all positive we can sum by triangles:

\[
\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{nm}{(n+m)!} = \sum_{k, \ell, n \in \mathbb{N}} \frac{nm}{(n+m)!} = \sum_{n=2}^{\infty} \sum_{\ell=1}^{n-1} \frac{(n-\ell)\ell}{n!} = \sum_{n=2}^{\infty} \frac{(n-1)(n+1)}{n!} = \frac{1}{6} \sum_{n=2}^{\infty} \frac{(n+1)!}{n^2} = \frac{1}{6} \sum_{n=2}^{\infty} \frac{(n+1)!}{n^2} = \frac{1}{6} \sum_{n=2}^{\infty} \frac{(n+3)}{n!} = \frac{1}{6} \sum_{n=2}^{\infty} \frac{1}{n!} \frac{d}{dx} x^{n+3} \bigg|_{x=1} = \frac{1}{6} \frac{d}{dx} \left(\sum_{n=0}^{\infty} \frac{x^{n+3}}{n!} \right) \bigg|_{x=1} = \frac{1}{6} \frac{d}{dx} (x^3 e^x) \bigg|_{x=1} = 2e^3.
\]

Solution 2 by Arkady Alt, San Jose, CA

Let \(k = m + n \). Then \(m = k - n \) and domain of summation \(\{1 \leq n \leq k \mid 1 \leq m \} \) can be represented as \(\{2 \leq k, 1 \leq n \leq k - 1\} \). Hence,

\[
\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{nm}{(n+m)!} = \sum_{k=2}^{\infty} \sum_{n=1}^{k-1} \frac{n(k-n)}{k!} = \sum_{k=2}^{\infty} \frac{1}{k!} \sum_{n=1}^{k-1} n(k-n) = \sum_{k=2}^{\infty} \frac{1}{k!} \sum_{n=1}^{k-1} n(k-n).
\]

Since

\[
\sum_{n=1}^{k-1} n(k-n) = \frac{k^2(k-1)}{2} - \frac{(k-1)k(2k-1)}{6} = \frac{k}{6} \left(3k^2 - 3k - 2k^2 + 3k - 1\right) = \frac{k(k^2 - 1)}{6},
\]

then

\[
\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{nm}{(n+m)!} = \frac{1}{6} \sum_{k=2}^{\infty} \frac{k+1}{(k-2)!}.
\]
Solution 3 by the proposer

The series equals $\frac{2e}{3}$. First we note that for $m \geq 0$ and $n \geq 1$ one has that

$$\int_0^1 x^m (1 - x)^{n-1} dx = B(m + 1, n) = \frac{m! \cdot (n - 1)!}{(n + m)!}.$$

Thus,

\[
\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{n \cdot m}{(n + m)!} = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \frac{n}{(n - 1)!} \cdot \frac{1}{(m - 1)!} \int_0^1 x^m (1 - x)^{n-1} dx
\]

\[
= \int_0^1 \left(\sum_{n=1}^{\infty} \frac{n}{(n - 1)!} (1 - x)^{n-1} \right) \cdot \left(\sum_{m=1}^{\infty} \frac{x^m}{(m - 1)!} \right) dx
\]

\[
= \int_0^1 \left(1 + \sum_{n=2}^{\infty} \frac{n}{(n - 1)!} (1 - x)^{n-1} \right) \cdot xe^x dx
\]

\[
= \int_0^1 \left(1 + \sum_{n=2}^{\infty} \frac{(1 - x)^{n-1}}{(n - 2)!} + \sum_{n=2}^{\infty} \frac{(1 - x)^{n-1}}{(n - 1)!} \right) \cdot xe^x dx
\]

\[
= \int_0^1 \left(1 + (1 - x)e^{1-x} + e^{1-x} - 1 \right) \cdot xe^x dx
\]

\[
= e \int_0^1 (2 - x)dx = \frac{2e}{3},
\]
and the problem is solved.

Also solved by Kee-Wai Lau, Hong Kong, China; Paolo Perfetti, Department of Mathematics, “Tor Vergata” University, Rome, Italy, and Albert Stadler, Herrliberg, Switzerland.